The Anomeric Configuration of 6-Methyl-3-D-glycosyluracil

Naotaka Yamaoka, Hiroshi Sugiyama,* and Katsura Tuzimura

Faculty of Agriculture and *Chemical Research Institute of Non-Aqueous Solution, Tohoku University, Sendai

(Received January 21, 1971)

Recent papers^{1,2)} in which Lemieux's PMR method was applied to determine the anomeric configuration of pyrimidine nucleosides prompt us to suggest the limitations of the method. The use of a seeming coupling constant in high-resolution PMR might be a mistake for the assignment of the anomeric proton of acylated ribofuranosyl nucleosides without consideration of the half-height width of the absorption peak,³⁾ since two heavily overlapped broad peaks seem to be one broad peak. We wish now to report the anomeric proton assignment of 6-methyl-3-D-glycosyluracils (Ia, b, and II) synthesized by the condensation of 6-methyluracil with acylglycosyl halide in nitromethane containing a hydrogen halide acceptor.⁴⁾

6-Methyl-3-D-ribofuranosyluracil (Ia) $[[\alpha]_{n}^{2}] = -18^{\circ}$ (c 0.083, H₂O), $\lambda_{max}^{H_{2}O} = 266$, $\lambda_{min}^{H_{2}O} = 234$ m μ (Found: C, 46.56: H, 5.59; N, 11.08; Calcd for $C_{10}H_{14}N_{2}O_{6}$: C, 46.51; H, 5.47; N, 10.85; mol wt, 258.23): NMR

data (DMSO- d_6) δ 6.10 (d, $J_{1',2'}$ =3.7 Hz, H-1')] and 6-methyl-3-(tri-O-benzoyl-D-ribofuranosyl) uracil (Ib) [NMR data (DMSO- d_6) δ 6.55 (s, half-height width 3 Hz, H-1' seemed to be pure β anomer judging from the NMR data.^{1,2)} 6-Methyl-3-D-glucopyranosyluracil [II, mp 196—200°C, $[\alpha]_{\rm b}^{\rm sz}=0^{\circ}$ (c 0.091, $H_2{\rm O}$), $[M]_{\rm sso}^{\rm sz}=0^{\circ}$ (c 0.0032 m, $H_2{\rm O}$), $\lambda_{\rm max}^{\rm HoO}=266$ (ε 9370), $\lambda_{\rm min}^{\rm HoO}=266$ 234 m μ (\$\varepsilon\$ 2036): (Found: C, 45.48; H, 5.64; N, 9.52; Calcd for $C_{11}H_{16}N_2O_7$: C, 45.83; H, 5.59; N, 9.72; mol wt 288.25): NMR data (D_2O) δ 5.65 (d, $J_{1',2'}$ =9.67 Hz, H-1'), 5.76 (d, $J_{1',2'}$ =9.33 Hz, H-1'), 5.62 (q, $J_{5,6}$ =0.7 Hz, H-5)] was an anomeric mixture. In order to prepare the pure anomer to give clear data, II was converted into 6-methyl-3-β-D-mannopyranosyluracil (III) [mp 237—238°C, $[\alpha]_{D}^{22} = -32.8^{\circ}$ (c 0.091, H_2O), $\lambda_{max}^{H_2O} = 267$, $\lambda_{min}^{H_2O} = 235 \text{ m}\mu$: (Found: C, 45.83; H, 5.59; N, 9.79; Calcd for $C_{11}H_{16}N_2O_7$: C, 45.83; H, 5.60; N, 9.72; mol wt 288.25): NMR data (D_2O) δ 6.08 (d, $J_{1',2'}=0.6$ Hz, H-1')] in several steps.

The optical rotatory dispersion of the dialdehydes formed from a 0.01 mol solution of the free nucleosides (Ia, II, and III) containing excess sodium metaperiodate⁵) gave the following data:

Ia,
$$[M]_{589}^{22} = -80^{\circ}$$
, $[M]_{350}^{22} = -410^{\circ}$
II, $[M]_{589}^{22} = -85^{\circ}$, $[M]_{350}^{22} = -400^{\circ}$

III,
$$[M]_{589}^{22} = -25^{\circ}$$
, $[M]_{350}^{22} = -230^{\circ}$

The anomeric configuration of furanosyl nucleoside could not be assigned only from the seeming PMR coupling constant of less than 1 Hz without a consideration of the broad half-height width of the absorption peak of the anomeric proton.

¹⁾ M. W. Winkley and R. K. Robins, J. Org. Chem., **33**, 2822 (1968).

²⁾ R. S. Klein, I. Wempen, K. A. Watanabe, and J. J. Fox, *ibid.*, **35**, 2330 (1970).

³⁾ R. U. Lemieux and D. R. Lineback, Ann. Rev. Biochem., 32, 155 (1963).

⁴⁾ N. Yamaoka, K. Aso, and K. Matsuda, J. Org. Chem., 30, 149 (1965).

⁵⁾ B. Lythgoe, H. Smith, and A. R. Todd, J. Chem. Soc., 1947, 355.